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ABSTRACT

The backfire bifilar helical antenna, consisting of two opposed helical

wires fed with balanced currents at one end, is a new type of circularly

polarized antenna. When operated above the cutoff frequency of, the principal

mode of the helical waveguide, the bifilar helix produces a beam directed

al~ng the structure toward the feed point. The term "backfire" is used to

describe this direction of radiation in contrast with "endfire" which denotes

radiation away from-the feed point.

Radiation patterns, measured for a wide. range of. helix parametersB,

show maximum directivity slightly above the cutoff frequency. The pattern

broadens with frequency, and; for pitch angles near forty-five degrees, the

beam splits and scans toward the broadside direction.

Near field measurements show.the current decaying rapidly to a level

about twenty decibels below the input level at a rate that increases with

frequency. Phase measurements in the near field show that in the feed region

the direction of phase, progression is toward the feed point. the oppositely

directed phase progression and direction of energy flow is characteristic of

a backward wave. The direction of phase progression is consistent with the

backfire direction of the main beam observed in the radiation patterns and

the increasing rate of current decay is consistent with the broadening of

the main beam with increasing frequency.

A theoretical analysis of the bifilar helical antenna is obtained. It

is based upon"the semi-infinite motl4 using thin wire assumptions. These,

so-called, linearizing assumptions consist of replacing the current distribu-

tion on the surface of the wire with a line current ohtVthe center line of the

Y



wire and of satisfying the boundary condition along bne line on the conducting

"surface. The Fourier transform of the current.distribution on the semi-infinite

hq,lix is/deduced from)the deter4nantal equation'of the bifilar helical wave-

guide-by a Wiener-Hopf techaiqd! The relation between this Fourier transform

and theradiation pattern of the backfire bifilar helical antenna is shown.

The results predict the. patterns of the experimental study and show the effect

of wire size on antenna performance.

L.C."
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1. INTRODUCTION

1.1 Statement of the Problem

j The purpose of this study is to provide a mathematical model of the

backfire bifilar helical antenna which contains the essential leatures of

the practical antenna and which is. amenble to solution. This model,has

been solved for the far field radiation pattern of 'the antenna, and the

results are compared with the radiation patterns that have been obtained'

experimentally. One outstanding characteristic of these patterns is that

_ \principyl direction of radiation is in the backfire direction. The

backfire direction of a surface wave antenna is along the structure toward

the feed point. Radiation in this direction can be associated with a phase

progression toward the feed point, while the group velocity must be away

from the feed point. 'This is characteristic of a backward wave of current

on the structure. The term "backfire" is used for contrast with the more

usual endfire surface wave antenna for which the principal direction of ra-

diation is away from the feed point of the structure.

The backfire bifilar helical antenna, shown in Figure 1, is constructed

of two helical wires wound in a right circular cylinder with a constant

pitch. The corresponding points of the wires are located at the ends of a

diameter of the cross section of the cylinder. The helical wires are fed

with balanced currents from a source on the axis of' the cylinder. A com-

plete description of the antenna includes: thd46\radiuis b, measured from

the axis of the cylinder to the center line of a conductor; the pitch dis-

tance p, measured along a generator of the cylinder; the wire radius a,

and the total length of the antenna.,
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1.2 Method of Solution

'A solution of ,the backfire bifilar helical antennaproblem is obtained,

first, by considering jhe basic helical geometry to be extended to infinity

in both directions, This is the helical wav,eguide"'problem which already has

an extensive literature. An exact account of the boundary conditions in this

problem involves finding a current distribution over the surface of the

conductor which makes the tangential electric intensity vanish everywhere

on the surface of the conductor. An approximation used by Sensiper. and

2.
Kogan is to'require that the tangential electric intensity vanish only

along some line along the surface. This approximation is good for rela-

tively thin conductors. Sensiper, in treating the tape helix, makes a

further approximation in assuming a functional dependence for the distribution

of current across the width of the tape. Kogan makes a similar approximation

by assuming that the surface current distribution may be replaced by a

current flowing along the center line of the helical conductor. The ap-

'> proximations involved in replacing a surface current by a line current and

in satisfying the boundary conditions along only one line of the surface

have been termed linearizing approximations. A formulation of the helical

waveguide problem, similar to that of Kogan, is used in this study.

Using the above approximations, the desired current distribution

becomes a function of only one variable.. This variable may be either

distance along the helix or distance along the helical axis. In this paper.

the helical axis is taken to coincide with the z-axis of a cartesian

coordinate system, and z is taken as the independent variable of the current

distribution. The integral equation-for the current on the helical waveguide

now has the form of a convolution integral. This happy circumstance related,
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to invariance under a one dimensional Abelian congruence'group, suggests a

solution by Fourier transformation. The determinantal equation for the

Fourier spectrum of the current distribution has three pairs of real roots

at the lower frequencies. As the frequency is increased, two pairs of roots

tend together and coalesce at the critical frequency, f . This frequency
c

marks tile lower limit of the range of frequencies of interest 'in this

study. The critical frequency depends, in a complicated way, upon the

radius of the helix, its pitch, and th-,condudtor radius, and no simple

expression is given for it.

The second step in the selution of the backfire bifilar helial antenna

problem is to obtain a solution for the current distribution on a helical

waveguide extending only along the positive z-axis of the coordintte system.

This is accomplished"by a Wiener-Hopf factorization of the tranSfprmed

solution for the helical waveguide. The boundary conditions on the factori-

zation are such that the current is identically zero for all negative z and

approaches a finite non-zero limit as z approaches zero from the right. The

discontinuity in the current at the origin is the source of energy in the

problem and corresponds to a pair of oscillating point charges separated

by the helix diameter, The result of this calculation is.the Fourier

transform of the current distribution on a semi-infinite bifilar helix" fed

by a charge dipole in the plane z = 0.

The solution obtained in this way is limited by the linearizing appro.xi-

mations described abov6. The remaining approximations in the theory

developed here are contained in equating this solution to the radiation

pattern of a finite-length bifilarhelical antenna fed from., a source on its

axis. The practical antenna differs from the mathematical model in'the

k !I



vicinity of the feed point by the addition of a current flowing along a

diameter of the cylindrical cross section. Thts 'addi.tional current element

is short in the range of helix`diamnl•rs of primary.interest in this study

and will not contribute noticeabl. to the radiated field. Measurements

of the current on several models of the bifilar helix above the critical

frequency show that the current decays rapidly with distance from the

feed point. At a level about 20 decibels below the input value, an-und-amped

wave becomes dominant, Because of the rapid attenuation of current on the

bifilar helix, the radiation pattern of the fidite"structure is expected

to be the same except for "end-fire" radiation caused by the residual

"free-mode" wave, It is well known that a finite line current distribution

and its far field radiation. pattern are Fourier transform pairs. This is

extended here to include the semi-infinite structure, and it is shown that

in this case also the radiation pattern is simply related to the transform

of the current distribution as a function of z except in the vicinity of

the current distribution at infinity.

The Fourier transform of the current distribution is obtained by

numerical techniques usingan automatic digital computer, The computed

patterns based upon this Fourier transform show good agreement with

measured patterns presented in this report, This confirms the validity

Sof the approximations used in constructing the mathematical model of the

antenna.

l".8 Review of Helix Analysis

, The study of electromagnetic wave propagation on helical conductors

through 1955 has been summarized by Sensiper and his thesis contains

..an extensive bibliogr.aphy of the literature. He obtains an exact solution
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of thd "tape" helix by expressing its field as a sum of sheath helix modes

and by, requiring the tangential electric. intensity to be zero on the tape.

The resulting arithmetic is found to be. intractable, and he quickly obtains

a more-manageable approximate solution by, requiring only that the tangential

electric intensity at the center of the tape be zero, When the resulting

2
expression is compared with that obtained by Kogan. from a potential

integral formulation, they are found to differ principally in the fOrm of

the convergence factor introduced by the approximation, Kogan treats the

helical wire model with the null field boundary condition satisfied only at

.,the points of tangency between the helical conductor and-a cylinder with

radius equal to the outer radius to the helical wire.

The work of these authors is directed ,toward the evaluation of the

firee-mode" propagation constants for undamped traveling waves of current

1
on the helical conductors. Although Sensiper does devote some space to

the source problem, his formulation of thi's, problem is for the infinite helix.

It is used to interpret the "free-mode" solutions of the source free problem.

Many authors have contributed to the literature on the helical waveguide,

Since their work has been reviewed by SensiperI' '3the bibliography is not

reproduced here.

1.l Helical Antennas

The helical antenna which most nearly approaches the backfire bifilar

helical antenna in performance is the helical beam antenna introduced by

Kraus in 1947, Kraus1s antenna is a monofilar helical wire fed at one

end against a ground screen. The properties of this antenna have been

discovered by experimental techniques. The current distribution on helical '

5
structures of this type was studied by Marsh The analysis of a helical

S... ...
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antenna of this type suffers the same difficulties as the analysis of

'the usual end-fire surface wave antenna. For both of these the feed

region •and the terminating region are important in determining their radiation

characteristics. In contrast, the characteristics of the backfire bifilar

helical antenna are controlled by the input region.

A bifilar-version of the Kraus helix/has been reported by.Holtum
6 .

This antenna is constructed of two coaxial helical wires on the diameters of

the supporting cylinder. Each conductor is fed against a ground screen with

the exciting currents in phase opposition. This differs from the backfire

bifilar helical antenna in which the conductors are fed at one end, one

against the other, without the presence of a ground screen. It is the

absence of the ground screen that distinguishes the backfire helix from

the Kraus-type helix. This fact is essential to the performance and

analysis of the backfire helical antenna.. On the other hand, the number

of helical conductors is not essential to the backfire characteristic

of the antenna. A backfire monofi ar helix is shown to have substantially

the same radiation characteristics"as the backfire bifilar helix. The

monofilar helix, however, is more difficult to feed in" the backfire mode.

Although both the Kraus helix and the backfire bifilar helix are

circularly polarized, several differences in the performance of these

antennas must be noted. The beam width of the Kraus helix decreases with

frequency while the backfire helix beam width increases with frequency.

The gain of the Kraus helix increases with length"while the gain of the

backfire helix is independent of length provided the ,length is large

"enough. Finally, "the Kraus helix is an end-fire antenna in contrast to

the backfire helix which radiates along the helical axis toward the feed

point,;.

V V
9J 11
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1.5 Organization

In the present section, the bac.Wf ire bifilar,)heliual antenna is described

and compared with other helical antennas of similar character. A description

of the method used to obtain a solution for the radiation pattern of the

antenna is given, and a brief review of the literature on <the helical wave-

guide is included. In Chapter 2 the relation betweeq( tv radiation pattern

of a helical antenna and the Fourier spectrum of its current distribution

is discussed. This motivates the work~of the three following chapters in

which the Fourier spectrum of the current distribution is obtainedc

Chapter 3 describes the approximate determinantal equation for the

helical waveguide as it is used in this study. This is derived from the

potential integral with a linear current approximation. The equation

describing the helical waveguide is factorized in Chapter 4 by the method

of Wiener-Hopf, and the evaluation of the resulting expression by numeri,cal

techniques is described in Chapter 5. The results of the numerical computation

are presented in Chapter 6 along with the experimental results, This Chapter

also indicates the connection between this study and the log-spiral and other

frequency-independent antennas, Chapter 7 summarizes and concludes the work.

.t,.t
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2. THE HELICAL ANTENNA RADIATION PATTERN

2.1 Formulation of. the Vector Potential

Since the purpose of this study is to.develop a theory that is capable

'of predicting the radiation patterns of the backfire bifilar helical antenna,

and since the geometry of the problem lends itself to a solution by Fourier

transformation) a relation between the radiation pattern and the Fourier,

spectrum of the current distribution for the bifilar helix must be obtained.

This section is devoted to establishing that relation.

The radiation pattern of an antenna will be taken to mean the angular

distribution of electric intensity in spherical coordinates at a large dis-

tance from the antenna. When only those terms that vary inversely withodis-

tance are retained", the electric intensity is related to the magnetic vector

potential by

•xr = -ik Ax * (1)

where r is a unit radial vector

k =,1 is the propagation constant of free space

is the intrinsic impedance of free space

Thus the radiation pattern is related to the angular distribution of the vector

potential, and the vector potential is deduced from the current by the well

known integral formula

A6r) =JJJ G(r, r ) I(r') dv (2)

where

G-k. -A exp [-jki_ r-r& I]
Gr, r )L =L

4r , -1 Ir-

• *1



is the Green's function in an unbounded homogeneous isotr6pic three.dimensional

space,'

r is the radius vector to a point of observation and

r is the radius vector to a source point.

By the method of induced sources, we may replace the conducting boundaries

at the surface of the helical wires by a surface current distribution existing

in homogeneous space. If this current distribution equals the surface current

on the helical conductors, the fields external to the conductors are unchanged

by removing the conductors from the space. If the conductors are sufficiently

thin, the field produced by the surface current distribution will not differ much

from that produced bya current distribution on the center line of the helical

wire. This approximation limits the analysis to thih wire helices, but it

has the advantage of converting,the volume integral in Equation (2) to a line

integral.

The bifilar helix then can be considered as two helical lines of current.

'Apoint on line one with axial. coordinate z will have cartesian coordinates

P1  (b cos Tz","b sin Tz/, z')

where

T 21/p

p =pitch of helix

b radius to centerline,

and the unit tangent to the helical wire at that point is given by

A. A -A I A.
u -x cos 41 sin rz +y cos '4 cos Sz +z sin

where 4 is the pitch angle of the helix given by

217 b
,cot -2 :b TbP

p

if .. t '

.Iq,',
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At the same value of the axial coordinate z a point on line two will have

cartesian coordinates

P C-b cos Tz', -b sin Tz' z')

with unit tangent
4• A -A A

u lcx COSt sin TZ - A cos SI cia +z sin +

The distance between a remote point (r, 6, ) and a point on line 1 is

given by

[= r sin 0 cos c'-b cosZ

4- '(r sin S sin K-b sin TZ )2 + (r cos 6-z)2] 1/2

or

r 2-2br sin Q cos (Tz 4- -.b2+z 1/2

Similarly, the distance between the remote point and a point on wire 2 is

given by

r 2 2I42br sin 6 cos (Tz-) +b2+z
r2 =.

The currents on the helical line can be considered to be a function of

the axial variable z # alone. If the currents in the two wires are equal and

oppositely directed for the same value of z', Equation, (2) may be written

...-. ekr -jkr

(r) cos - + -- sin Tz I ( dz

x 4,\411r 1  4'1rr2 /

(r) = cos, -j l -
A (r)=COSt ekj * Jz 2) COS IZ C1 dZ' (3)Ax Tr

*1(ekr 1  jr2

A(r) sn1 -y JI (a') dx'

2.2ý Transformation by Parseval's Theorem

In Equation (3), the vector potential at the point Cr, O, 4) can be related



to the Fourier spectrum of the current distribution by Parseval's theorem.

Parseval's theorem states; Given two functions, F(z) and I(z), of the

9 spatial variable z with Fourier transforms, F(P) and I(•), in the transform

variable P,

F*(z) I(z) dz =27f 0 P(P)I(f) dP

where 7(P) is related to I (z) by

I(P) = / I(z)e dz

This introduces the Fourier transform of the current distribution into the

calculations for the vector potential. In this paper the.tilde &) is used

to ,denote the Fourier transform of a function of z, and the asterisk (*) is

used to denote the complex conjugate of a function. It is now necessary to

find the Fourier transform of the remaining factor in the integrand and to

evaluate the transformed integral at a point remote from the helix. The complex

conjugate of this factor in the first integral of Equation (3) can be written
eJkr eJkr2 )JTZe-J~z

F*(z) e, %4" s + e r?)2 sin T = (g+g ) e j -j

14T 7 2' 87TJ

where gl and g2 are, the functions discussed in Appendix A
2- 2 2 1/2exp (jk[A +2AB cos (db+Tz) +13 (z-d)2I/)

9• - A2 72•'.AB cos (p,_.z).+B2 +(.-d )2]1/2

where

A = r sin 6

B= b

d = r cos e

Using Equation (A-5) and the shifting theorem for Fourier transforms we obtain

: . ." A

hI
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n even
... ]1/2 H(1) ([k2 r(B_(n+1)T)2]l/2)

• , . J (bO[k2-8 (- ) (rsn

-e(B-(n-I)T) r cos e +ne veI.
In this way, using Parseval's theorem, the fir'st equation in (3) becomes

j (b[k2-(B-(n-l)T)2]1/2)H(1) (r sin elk2-(B-(n-1)T)2] 1/2)
n n

A r+C°s • sd .j(B-(n-1)T) r cos eJný

A (r)-~ d~-oB1 *een even

-Jnb[k2B-(n+ 1)T)2]/2H(l) (r sin P[k 2 -(B-(n+1)T) I )

ej(B-(n+l)T) *r cos EeJný.'

2.3 The Far-Field Radiation Pattern

The asymptotic estimation of this integral follows that given in Appendix B.

In this case the change of variables (Equation B-4) is

B -(n-l) T = k cos a

or

B -(n+l) T = k cos a

Thus we have

A (r)-+j• cos 'J G J (kb sin 0)[I(k cos B.+.(n+I)T)-T(k cos e+)(n+l)Tr)]e ný
x "n vno n

neven

where
-jkr 0e o

G -o 4l•r
0

In this way Equation (3) becomes .'.

A (r " +j7F cos , G J (P)[ I(k cos O4(n-l)r) -T(k cos B+(n+l)T)]eojn4 (4)
n even .

A ( flcos E , GJ (P)[I(k cos .+.(n-1)T) +.I(k cos 0+(n+l)T)]en even

jný, -A (r) ' 2V sin GoJ(p) I(k cos O+nT)e
.. nodd
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where

P = kb sin 8

These series are rapidly. convergent if I(k cos O+nT) is bounded on n because of

the properties of J (P). The ratio of the first two of these to J (P) is shown
n 0

in Figure 2. In addition, it will be shown later that for the backfire bifilar

helix 1n (k cos, S+-T).J also decreases rapidly with n. Thus the radiation fieldn

of the backfire bifflar helix may be represented by the first terms of Equation (4)

with little error giving

A (r•) J1 cos Y G J (P)[I(k cos 0-T)-I(k cos e8+T)]x 0 0

A (r) - Woos Y.,G J (P)[I(k cos 6 +T)+I(k cos -r)] (5)y 00o

A(V M. 2W sin Y Go J 1 (p))I(k cos e+)eT e+ I(N cos G-T)e J]

From Equation (5) it is obvious that the backfire bifilar helix radiation

pattern is the sum of right-handed and left-handed circularly-polarized components.

The ratio of these components on the axis of the antenna is given by

1(1-k)
I('.l-k)

The axial ratio of the polarization ellipse is deduced from this by the

equation
'•' l+r

R ='-. (6)
1-r

Computed values of the axial ratio are described in Chapter 6 of this report.

The relation between the radiation pattern of the backfire bifilar helix

and the Fourier spectrum of its current distribution is established. The

spectrum of the current distribution on the semi-infinite helix will be deduced

from the determinantal equation for the infinite helix. The determinantal.equation

"for the infinite bifilar helix is derived in the next chapter.

<I .

• . .,'SN
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3. THE BIFILAR HELIX DETERMINANTAL EQUATION

3.1 The Complete Circuit Equation

The electromagnetic field in an infinite homogeneous isotropic medium can

be obtained from the magnetic vector potential A and the scalar potential V

using the relations

H-= VxA

H =,-jkt A-VV

If the divergence of A is chosen to be

V-A = -jk/• V

these potentials satisfy the scalar and vector wave equations,

(7+k
2 )V = _P

The solution of these equaltions can be written in terms of the Green's

function of the medium

a(•, ',) --exp[-jklr--'P{

asrr

V(r) -. JJJG(r, r )P(r) dv

A(r) f ! ) I(r-) dv (8)

Using the equation of continuity

V.T = 'jwp

in Equation (8) with Equation (7), there results

V= jXýk C (r, 'r') V'I (-:) dv (9)

7V =-E -J9kJ (rj , P) I(r) dv

which forms the basis of the complete circuit equation.
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The circuit equation for the bifilar helix is obtained by replacing

the conducting boundaries of thehelical wires by the current. distribution

on the surface required to produce Oero tangential electric intensity there,

The equatipn is simplified by tlinearizing the boundary condition., This is

based on two thin wire approximations; first, it is assumed that the current

distributiop on the surface of the wires can be replaced with a line current

distribution at the center of the wire, and, second, it is assumed that, if

the electric field is zero along only.one line of"the surface, the resulting

p solution will be a reasonable approximation to the exact solution. These

--assumptions are good if'the wires are sufficiently thin.

In this analysis. the current will be assumed to exist on the line

defined in cartesian coordinates by

P1 = Cb cos Tz'[ b sin Tz', z")

P = (-b cos TzI, -b sin TzW, z')
2

-and the null line will be taken as defined by

q= (b cos Tz , b'sin Tz, z)

"q= (-b' cos TZ, -b sin TZh z)

where

b =b-a

b = distance from helix axis to wire centerline

a = wire radius

Thus, the currents and potentials can be considered a function of the z

coordinate alone. Because of the constant pitch angle of, the helix,

. = cot- (2nrb/p)

an elementary displacement along the axis is related-to one along the wire by

"dz= sin W dp

S~~~~~~%-•' ,,, '.
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Thus on wire one

dI(z'),V, I (r =sin
dz

:VV(r") sin k •u(z) dV(z•

u (z') u (z') II
A 111where u1 =-cos sin Tz+^ cos cos 2ý sin 4

In these equations it is assumed that the pitch angle ofthe null line C'is I
equal to the pitch angle @of the centerline of the wire. The correct result is

eoa t cot otepchagecot+

where I

S=a/b

The approximation (0 =) is consistent, with the thin-wire assumption used I
throughout this study.

3.2 The Determinantal Equation for the Monofilar Helix

Equation (9) will be applied first to a single wire helix so that the I
modification of the determinantal required for the balanced bifilar helix

will be made evident. The current is confined to the line p., and the potential I

is evaluated on the line ql" Since the electric field strength is assumed zero'

along this line, Equation (9) becomes

V(z) =j f GII(z; z) sin d dI 1 (zd

00

dVd

sin -j" GI(z z u (z).u (z Ii(z') dz' (0)
dl'~ f 11 (0

If the-first equation is differentiated with respect to z, multiplied by sin 1
and equated to the second equation; the result is

00 2 dG ii(Z, z) dI(z/) 2 A
• fsn 2  d z d7- + k (Ul(z).u (z') G (Zý Z') ;(z')] dizjdz dz 1. 1 1 z)Iz) z (11)1


